Low Temperature Synthesis and Characterization of MFe12O19 (M=Sr, Ca) by Solvo-combustion and Ceramic Method Using Mathematical Analysis

Main Article Content

A. B. Borkar
B. T. Borkar
K. P. Pande
S. R. Choubey


Hexagonal Magnetoplumbite Compound CaFe12O19 were synthesized by two methods  namely  Solvo  Combustion  and  Ceramic methods respectively. The compounds were studied by X-ray diffraction technique (XRD), Scanning electron Microscope (SEM), energy dispersive spectroscopy (EDS) and Magnetic Studies. The XRD studies indicate the sample synthesized by Solvo Combustion Method CaFe12O19 doesnot crystallize purely in Magnetoplumbite structure. Its ‘d’ values and (hkl) are slightly different than when small amount of Strontium is added to calcium which crystallize in Hexagonal Structure with a = 5.80 Ǻ and c = 22.15 Ǻ since the ionic radius of Strontium  is  more than that of Calcium.  The SEM images by Solvo Combustion and Ceramic method nearly indicate the morphology of the samples to be Hexagonal structure. The EDS indicates the clear presence of element Ca, Sr, Fe and O in the Solvo combustion and ceramic method prepared sample.

MFe12O19, Solvo-combustion, ceramic method, hexagonal magnetoplumbite compound.

Article Details

How to Cite
Borkar, A. B., Borkar, B. T., Pande, K. P., & Choubey, S. R. (2019). Low Temperature Synthesis and Characterization of MFe12O19 (M=Sr, Ca) by Solvo-combustion and Ceramic Method Using Mathematical Analysis. Asian Journal of Physical and Chemical Sciences, 7(3), 1-7. https://doi.org/10.9734/ajopacs/2019/v7i330098
Original Research Article


Adelskold V, Arkiv Kemi, Min Geol. (A). 1998;12.

Went JJ, Rathenau GW, Garter EW, Van Oosterhoul GW. Philos. Technical Review. 1952;13:194.

Thompson S, Shirtcliffe N, Keefe EŎ, AAppletonn S, Perry CJ. Magn Magn. Mater. 2005;292:100-107.

Verma A, Dube DJ. Am. Cem. Soc. 2005; 88(3):519-523.

Mallikarjuna N, Lagasehetti A, Venkataraman A. J. Therm. Anal. Calorim. 2003;74(3):819-826.

Kools F., Morel A., Grossinger R, Breton J. M. and Teenaud P. J. Magn.ater. 2002; 242-245:1270,

Ozgar U, Alivou Y, Markoc H, J. Material Sc. Materials in Electronics. 2009;20:789.

M. Pordavi-Horvath, J. Magn. & Magn. Mater. 2000;216:171

W H Von Aulock, Handbook of Microwave Ferrite Materials (Academic Press, New York; 1965.

Collamb AB. Lambert Anderon JX, Boucherle D. Samaras. Phys. Stat Sol. (A).1986;96:385.

Smit J, Wign HPJ. Ferrites (Philips Thechnical Library, Eindhoven, The Netherlands; 1959.

Lechevallier L, Breton JMB, Wang JF, Harris IR. Magn Magn J. Mater. 2004; 269:192.

Jomker GH, Wign HP, Braun PB. Philips Technical Rev. 1956;57(18):145.

D. Liejak and M. Drofenik. J. Am. Cerm. Soc. 2007;90:3517.

Mee CD, Jeschke JCJ. App. Phys. 1963; 34:1271.

Roos WJ. Am. Ceram. Soc. 1980;63:601.

Hang YS, Ho CM, Hsu HY, Liu CJ, Magn J. Magn. Mater. 2004;279:401.

Berne JA, Thesis Univ. of Ulster, Jordstoon; 1997.

Kondawar SB, Thakare SR, Bahve NS, Burghate DK. Int. J. of Nano. Sc. World Scientific Publishing Company. 2011;6: 1231-1235.

Choi J, S. Song. Material. Letter. 1969;19: 697-699.

Khalid Mehmood Ur. Rahaman, Xiongong Liu, Shaong giu F, Mohammad Wasim Khan, Wazir Z, Zang, Zong Yang J. Super. Con. Nov. Magn. Springer Science; 2017.
DOI: 10.1007/S10948—017-4272-5

Chao Cheng Liu, Xiansong Lia, Shuomjiu Fong, Khalid Mohmood Ur. Rehman, Mingling Loi, Cong Zong, Hoohao Li, Xiaong Yu, Meng J. Magn, Mag. Materials. 2017;08:79.

Nandotaria RA, Singh Sandhu C, Mohd. Hashimat al Magnetic introdutions and dielectric dispersion in Mg Substituded M-type Sr-Cu hexaferrite nano-particles. Ceramic. Int. 2018;44:4426-4455.

Singh J, Sin C, Kaur D, Zoki H. Elucidation of phase evolution, microstructural magnetic properties of CO^(2+)-Al^(3+) doped M-type Ba-Sr hexaferrite Synthesisel by a Ceramic method, J. Alloys compound. 2017;695:1112-1121.

Chetna C. chandon, Amsim R. Kogdi, Jotonia RB. Strution, magnetic and dielectric propertices of Co-Sr Sabstitute M-type Calcium hexagonal ferrite nanoparticle in presence of α-Fe_2 O_3 phase. Ceramic Intenation; 2018.