Non-relativistic Energy Spectrum of the Deng-Fan Oscillator via the WKB Approximation Method

Main Article Content

Ekwevugbe Omugbe

Abstract

The energy spectrum of the radial Schrodinger equation with the molecular Deng Fan potential has been obtained through the WKB approximation scheme. The radial WKB solution yields a transcendental or an implicit equation. The energy eigenvalues for non-physical and real molecular interacting systems are presented. In comparison with the numerical eigenvalues obtained with MATHEMATICA 3.0 package, the WKB approximation method produces improved results over the results obtained with other analytical methods in the literature.

Keywords:
Deng-Fan potential, diatomic molecules, WKB approximation method, Schrodinger equation.

Article Details

How to Cite
Omugbe, E. (2020). Non-relativistic Energy Spectrum of the Deng-Fan Oscillator via the WKB Approximation Method. Asian Journal of Physical and Chemical Sciences, 8(1), 26-36. https://doi.org/10.9734/ajopacs/2020/v8i130107
Section
Short communication

References

Roy AK. Ro-vibrational studies of diatomic molecules in a shifted Deng-Fan oscillator potential; 2014. arXiv:1409.2403v1 [physics.chem-ph]

Deng ZH, Fan YP. A potential function of diatomic molecules. Shandong Univ. J. 1957;7:162.

Oyewumi KJ, Oluwadare OJ, Sen KD, Babalola OA. Bound state solutions of the Deng–Fan molecular potential with the Pekeris-type approximation using the Nikiforov–Uvarov (N–U) method. J. Math. Chem. 2013;51:976–991.

Rong Z, Kjaergaard HG, Sage ML. Comparison of the Morse and Deng–Fan potentials for X–H bonds in small molecules. Molecular Physics. 2003; 101(14):2285–2294.

Dong SH, Gu XY. Arbitrary l state solutions of the Schrodinger equation with the Deng-Fan molecular potential. J. Phys. Conf. Ser. 2008;96(1):012109.

Diaf A. Arbitrary l-state solutions of the Feynman propagator with the Deng-Fan molecular potential. J. Phys.: Conf. Ser. 2015;574:012022.

Del Sol Mesa A. Quesne C, Yu F. Smirnov. Generalized Morse potential: Symmetry and satellite potentials; 1997. arXiv:physics/9708004v2 [math-ph]

Yazarloo BH, Liangliang L, Guanghui L, Zarrinkamar S, Hassanabadi H. The nonrelativistic scattering states of the Deng-Fan potential. Advances in High Energy Physics; 2013. Article ID: 317605.

Oyewumi KJ, Falaye BJ, Onate CA, Oluwadare OJ, Yahya WA. Thermo-dynamic properties and the approximate solutions of the Schrödinger equation with the shifted Deng–Fan potential model. Molecular Physics: An International Journal at the Interface between Chemistry and Physics. 2014;112(1):127-141.

Hamzavi M, Ikhdair SM, Thylwe KE. Equivalence of the empirical shifted Deng–Fan oscillator potential for diatomic molecules. J. Math. Chem. 2013;51:227–238.

Oluwadare OJ, Oyewumi KJ. Energy spectra and the expectation values of diatomic molecules confined by the shifted Deng-Fan potential. Eur. Phys. J. Plus. 2018;133:422.

Amos PI, Louis H, Ita BI, Ikeuba AI. Bound state solutions to the Schrödinger equation with Shifted Deng-Fan potential via WKB approximation method. Journal of Applied Physical Science International. 2017;9(3): 106-110.

Oluwadare OJ, Oyewumi KJ, Babalola OA. Exact S-Wave solution of the Klein-Gordon equation with the Deng-Fan molecular potential using the Nikiforov-Uvarov (NU) method. The African Review of Physics. 2012;7:0016.

Hassanabadi H, Yazarloo BH, Zarrinkamar S, Rahimov H. Deng-Fan potential for relativistic spinless particles — an Ansatz solution. Commun. Theor. Phys. 2012;57: 339–342.

Pekeris CL. The rotation-vibration coupling in diatomic molecules. Phys. Rev. 1934;45(2):98-103.

Greene RL, Aldrich C. Variational wave functions for a screened Coulomb potential. Phys. Rev. A. 1976;14(6):2363-2366.

Lucha W, Schöberl FF. Solving the Schrödinger equation for bound states with Mathematica 3.0. Int. J. Mod. Phys. C. 1999;10(4):607-619.

Merzbacher E. Quantum mechanics, 3rd Ed. John Wiley and Sons Inc. New York; 1998.

Griffiths DJ. Introduction to quantum mechanics. Prentice Hall Inc. Upper Saddle River, NJ USA; 1995.

Hruska M, Keung W, Sukhatme U. Accuracy of Semiclassical methods for shape invariant potentials. Phys. Rev. A. 1997;55(5):3345-3350.

Sergeenko MN. Zeroth WKB approximation in quantum mechanics; 2002. arXiv:quant ph/0206179.

Langer RE. On the connection formulas and the solutions of the wave equation. Phys. Rev. 1937;51(8):669–676.

Sergeenko MN. Semiclassical wave equation and exactness of the WKB method. Phys. Rev. A. 1996;53:3798.

Falaye BJ, Ikhdair SM, Hamzavi M. Shifted Tietz–Wei oscillator for simulating the atomic interaction in diatomic molecules. J. Theor. Appl Phys. 2015;9:151–158.