WKB Energy Expression for the Radial Schrödinger Equation with a Generalized Pseudoharmonic Potential

Main Article Content

E. Omugbe
O. E. Osafile
I. B. Okon


In this paper, we applied the semi-classical quantization approximation method to solve the radial Schrödinger equation with a generalized Pseudoharmonic potential. The four turning points problem within the framework of the Wentzel-Kramers-Brillouin (WKB) method was transformed into two turning points and subsequently, the energy spectrum was obtained. Some special cases of the generalized Pseudoharmonic potential are presented. The WKB approximation approach reproduces the exact energy expression obtained with several analytical methods in the literature.  The values of the energy levels for some selected diatomic molecules (N2, CO, NO, CH) obtained numerically are in excellent agreement with those from previous works in the literature.

Schrödinger equation, WKB approximation method, Pseudoharmonic potential

Article Details

How to Cite
Omugbe, E., Osafile, O. E., & Okon, I. B. (2020). WKB Energy Expression for the Radial Schrödinger Equation with a Generalized Pseudoharmonic Potential. Asian Journal of Physical and Chemical Sciences, 8(2), 13-20. https://doi.org/10.9734/ajopacs/2020/v8i230112
Original Research Article


Mutuk H. Asymptotic iteration and variational methods for Gaussian potential; Pramana J. Phys. 2019;92(66):1-5.
DOI: 10.1007/s12043-019-1729-z

Falaye BJ, Oyewumi KJ, Ibrahim TT, Punyasena, MA, Onate CA. Bound state solutions of the Manning–Rosen potential; Can. J. Phys. 2013;91(1):98-104.
DOI: 10.1139/cjp-2012-0330

Ciftci H, Kisoglu HF. Non-relativistic Arbitrary l-states of quarkonium through asymptotic iterative method; Advances in high energy physics; 2018.

Hall RL, Saad N. Schrödinger spectrum generated by the Cornell potential; Open Phys. 2015;13:83-89.

Meyur S. Bound State energy level for three solvable potentials bulg. J. Phys. 2011;38:347.

Nikiforov AF. Uvarov VB. Special functions of mathematical physics. Birkhauser, Basel; 1988.

Hamzavi, M. Movahedi M, Thylwe KE, Rajabi AA. Approximate analytical solution of the Yukawa potential with arbitrary angular momenta; Chin. Phys. Lett. 2012;29(8):1-4.
DOI: 10.1088/0256-307X/29/8/080302

Tezcan C, Sever RA. General Approach for the exact solution of the Schrödinger Equation; Int. J. Theor. Phys. 2009;48:337-350.

Ituen BO, Popoola O, Cecilia NI, Antia, AD. Solutions of schrödinger and Klein-Gordon equations with Hulthen plus inversely quadratic exponential, Mie-Type Potential; Phy. Sci. Int. J. 2018;19:1-27.

Onate CA, Ojonubah. JO. Eigensolutions of the Schrödinger equation with a class of Yukawa potential via supersymmetric approach; Theor. Appl. Phys. 2016;10:21-26.
DOI: 10.1007/s40094-015-0196-2

Onate CA. Approximate solutions of the non-relativistic schrödinger equation with an interaction of Coulomb and hulthen potentials; Sop transactions on theoretical physics. 2014;1(2):118-127.
DOI: 10.15764/TPHY.2014.02011

Khokha EM, Abu-Shady M, Abdel-Karim TA. Quarkonium masses in the N-dimensional space using the analytical exact iteration method; Int. J. Theor. Appl. Math. 2016;2(2):86-92.

Chatterjee A. 1/N Expansion for the Gaussian potential, J. Phys. A. 1985; 18(12):2403-2408.

Mutuk H. Advances in high energy physics; 2019.

Article ID 3105373.

Ita BI, Louis H, Akakuru OU, Nzeata-Ibe NA, Ikeuba AI, Magu TO, Amos PI, Edet CO. Approximate solution to the Schrödinger equation with Manning-Rosen plus a class of Yukawa potential via the WKBJ approximation method; Bulg. J. Phys. 2018;45:323-333.

Ita BI, Louis H, Nzeata IN, Ikeuba A, Akakuru OU, Magu TO, Amos PI, Michael MO. Approximate l-states solutions to the Schrodinger equation with Manning-Rosen plus Hellmann; Sri Lankan J. phys. 2018;19:37-45.

Louis H, Ita BI, Amos PI, Nzeata IN, Joseph I, Ivan O, Magu TO. Solution for inversely Quadratic Yukawa potential plus Inversely Hellmann potential; World J. Appl. phys. 2017;2:109-112.

Seetharaman MA, Raghaven S, Vasan SS. WKB solution for inversely Quadratic Yukawa potential plus Inversely Hellmann potential; J. Phys. A. Math. Gen. 1983; 16:455-462.
DOI: 10.1088/0305-4470/16/3/005

Sergeenko MN. Zeroth WKB. Approximation in quantum mechanics arXiv:quant ph/0206179; 2002.

Sergeenko MN. Quantum fluctuations of the angular momentum and energy of the ground states; Mod. Phys. Lett. A. 1998;13: 33-38.

Sergeenko MN. Semiclassical wave equation and exactness of the WKB method; Phys. Rev. A. 1996;53:3798.

Sergeenko MN. Quasi-classical analysis of three dimensional Schrödinger’s equation and its solution Mod. Phys. Lett.A. 2000;15(2):83-100.

Das T, Arda A. Exact analytical solution of the N-dimensional radial Schrödinger equation with Pseudoharmonic potential via Laplace transform approach. Adv. energ. phys. 2015;1-8.

Arda A, Sever R. Exact solutions of the Schrödinger equation via Laplace transform approach: Pseudoharmonic potential and Mie-type potentials; J Math. Chem. 2012;50:971-980.

Rani R, Bhardwaj SB, Chand F. Bound state solutions to the Schrödinger equation for some diatomic molecules; Pramana, J. Phys. 2018;91(46):1-8.

Ikhdair SM, Sever R. Exact polynomial eigensolutions of the Schrödinger equation for the pseudoharmonic potential. J. Mol. Struc. theochem. 2007;806:155-158.

Sever R, Tezcan C, Aktas M, Yesiltas O. Exact solution of Schrodinger equation for Pseudoharmonic potential; J Math. Chem. 2008;43(2):845-851.

Oyewumi KJ, Sen KD. Exact solutions of the Schrödinger equation for the Pseudoharmonic potential; an application to some diatomic molecules J Math Chem. 2012;50:1039-1059.

Oyewumi KJ, Titiloye EO, Alabi AB, Falaye BJ. Bound states of pseudo-harmonic oscillator in the presence of magnetic field. J. Nig. Math. Soc. 2016;35:460-467.

Ikhdair SM, Sever R. Exact solutions of the radial Schrodinger equation for some physical potentials; Cent Eur. J. Phys. 2007;5(4):516-527.
DOI: 10.2478/s11534-007-0022-9.

Oyewumi KJ, Akinpelu FO, Agboola AD. Exactly Complete Solutions of the Pseudoharmonic Potential in N-Dimensions; Int J Theor Phys. 2008;47: 1039-1057.

Amani AR, Ghorbanpour H. Supersymmetry approach and shape invariance for pseudo-harmonic potential; Acta Phys. Pol. B. 2012;43:1795.

Akcay H, Sever R. Analytical solutions of Schrödinger equation for the diatomic molecular potentials with any angular momentum. J. Math. Chem. 2012;50:1973-1987.
DOI: 10.1007/s10910-012-0013-y

Dong SH. Realization of Dynamic Group for the Pseudoharmonic Oscillator; Appl. Math. Lett. 2003;16:199-203.

Omugbe E. Non-relativistic energy spectrum of the Deng-Fan oscillator via the WKB approximation method. Asian J. Phy. Chem. Sci. 2020;8(1):26-36.

Hruska M, Keung W, Sukhatme U. Accuracy of Semiclassical methods for shape invariant potentials; Phys. Rev. A. 1997;55(5):3345-3350.

Langer RE. On the connection formulas and the solutions of the wave equation; Phys. Rev. 1937;51(8):669-676.

Ikhdair SM, Sever R. Exact quantization rule to the Kratzer-type potentials: An application to the diatomic molecules; J. Math. Chem. 2009;45:1137.
DOI:10.1007/s10910-008-9438-8. eprint. arXiv:0802.0589

Adamowski J, Sobkowicz M, Szafran B, Bednarek S. Electron pair in a Gaussian

confining potential; Phy. Rev. B. 2000;62(7): 4234-4237.

Koksal KA. simple analytical expression for bound state energies for an attractive Gaussian confining potential; Phy. Scri. 2012;86(3):1-3.
DOI:10.1088/0031-949/86/03/035006/ meta

Oyewumi KJ, Bangudu EA. Isotropic harmonic oscillator plus inverse quadratic potential in N-Dimensional spaces; Arab. J. Sci Eng. 2003;28(24):173-182.

Ikhdair SM, Sever R. On solutions of the Schrödinger equation for some molecular potentials: wave function ansatz; Cent. Eur. J. Phys. 2008;6(3):697-703.
DOI: 10.2478/s11534-008-0060-y