Register | Login

Asian Journal of Physical and Chemical Sciences

  • About
    • About the Journal
    • Submissions & Author Guideline
    • Accepted Papers
    • Editorial Policy
    • Editorial Board Members
    • Reviewers
    • Printed Hard copy
    • Subscription
    • Membership
    • Publication Ethics and Malpractice Statement
    • Digital Archiving
    • Contact
  • Archives
  • Indexing
  • Publication Charge
  • Submission
  • Testimonials
  • Announcements
Advanced Search
  1. Home
  2. Archives
  3. 2022 - Volume 10 [Issue 4]
  4. Original Research Article

Author Guidelines


Submit Manuscript


Editorial Board Member


Membership


Subscription


Numerical Study of Natural Solutal Convection in an Isoscele Trapezoidal Cavity

  •   Gagnon Koffi Apédanou
  •   Kokou N’wuitcha
  •   Yendoubé Laré
  •   Kossi Napo

Asian Journal of Physical and Chemical Sciences, Volume 10, Issue 4, Page 69-87
DOI: 10.9734/ajopacs/2022/v10i4190
Published: 31 December 2022

  • View Article
  • Download
  • Cite
  • References
  • Statistics
  • Share

Abstract


A numerical study of the natural heat and mass transfer in a cavity with a straight isoscele cross-section containing air is made in this paper. The two inclined side walls are kept in natural convection with the surrounding environment. The upper horizontal wall is subjected to a heat flux of constant density, while the lower one is adiabatic. Under the Boussinesq assumption, the thermodynamic conditions are numerically studied using the unsteady convection equations formulated as a secondary variable of vorticity and a stream function, energy and moisture. The system of equations discretised by the implicit finite difference method is solved by the Thomas algorithm. The results show a flow structure, isotherms and isohumidities dependent on the study parameters. Thus, on one hand, an increase in the inclination angle of the walls is accompanied by an increase in the velocity of the fluid. On the other hand, an increase in the aspect ratio or Lewis number leads to a decrease in the fluid’s velocity. The average Nusselt number, which is independent of the Rayleigh number, increases slightly as the inclination angle of the walls decreases. The increase of the Lewis number results in the decrease of the flow velocity components values. It is observed that the maxima values of velocity components were reached for Rayleigh number equal to 7.103.

Keywords:
  • Natural convection
  • isoscele trapezoidal cavity
  • Boussinesq approximation
  • critical Rayleigh
  • Nusselt number
  • Lewis number
  • Full Article – PDF
  • Review History

How to Cite

Koffi Apédanou , G., N’wuitcha , K., Laré , Y., & Napo , K. (2022). Numerical Study of Natural Solutal Convection in an Isoscele Trapezoidal Cavity. Asian Journal of Physical and Chemical Sciences, 10(4), 69–87. https://doi.org/10.9734/ajopacs/2022/v10i4190
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

References

Lam SW, Gani R, Symons J. Experimental and Numerical Studies of Natural Convection in Trapezoidal Cavities. J. Heat Transf. 1989;111(2):372‑377. DOI: 10.1115/1.3250687.

Kuyper RA, Hoogendoorn CJ. Laminar natural convection flow in trapezoidal enclosures. Numer. Heat Transf. Part Appl. 1995;28(1):55‑67. DOI: 10.1080/10407789508913732.

Boussaid M, Mezenner A, Bouhadef M. Convection naturelle de chaleur et de masse dans une cavite trapezoidale. Int. J. Therm. Sci.1999;38:363-371.

Acharya FM. Natural convection in trapezoidal cavities with baffles mounted on the upper inclined surfaces. Numer. Heat Transf. Part Appl. 2000;37(6): 545‑565 DOI: 10.1080/104077800274082.

Lasfer K, Bouzaiane M, Lili T. Etude numérique de la convection naturelle turbulente dans une cavité trapézoïdale. In JITH. 2007; 2007.

Uddin MB, Rahman MM, Khan MAH, Saidur R, Ibrahim TA. Hydromagnetic double-diffusive mixed convection in trapezoidal enclosure due to uniform and nonuniform heating at the bottom side: Effect of Lewis number. Alex. Eng. J., 2016;55(2): 1165‑1176 DOI: 10.1016/j.aej.2016.03.035.

Esfe MH, Arani AAA, Yan WM, Ehteram H, Aghaie A, Afrand M. Natural convection in a trapezoidal enclosure filled with carbon nanotube-EG-water nanofluid. Int. J. Heat Mass Transf. 2016;92:76‑82

Benzema M, Benkahla YK, Labsi N, Brunier E, Ouyahia SE. Numerical mixed convection heat transfer analysis in a ventilated irregular enclosure crossed by Cu–water nanofluid. Arab. J. Sci. Eng. 2017;42(11):4575‑4586.

Venkatadri K, Anwar Bég O, Rajarajeswari P, Ramachandra Prasad V. Numerical simulation of thermal radiation influence on natural convection in a trapezoidal enclosure: Heat flow visualization through energy flux vectors. Int. J. Mech. Sci. 2020; 171:105391 DOI: 10.1016/j.ijmecsci.2019.105391.

Rostami S. A Review on the control parameters of natural convection in different shaped cavities with and without nanofluid. Processes.2020;8(9)1011. DOI: 10.3390/pr8091011.

Ghouizi J, Nabou M, Elmir M, Douha M, Berramdane M. Numerical Simulation of Natural Convection in A Cavity Filled with A Nanofluid Who’s Wall Containing the Heat Source Is Inclined. J. Adv. Res. Fluid Mech. Therm. Sci. 2020;76(1):1‑16. DOI: https://doi.org/10.37934/arfmts.76.1.116.

Dogonchi AS, Sadeghi MS, Ghodrat M, Chamkha AJ, Elmasry Y, Alsulami R. Natural convection and entropy generation of a nanoliquid in a crown wavy cavity: Effect of thermo-physical parameters and cavity shape. Case Stud. Therm. Eng. 2021;27: 101208. DOI: 10.1016/j.csite.2021.101208.

Ishak MS., Alsabery AI, Hashim I. Entropy generation and natural convection of nanofluids in a trapezoidal cavity having an innersolid cylinder. J. Phys. Conf. Ser. 2021;1988(1):012012.doi: 10.1088/1742-6596/1988/1/012012.

Bilal S, Rehman M, Noeiaghdam S, Ahmad H, Akgül A. Numerical analysis of natural convection driven flow of a non-newtonian power-law fluid in a trapezoidal enclosure with a U-shaped constructal. Energies. 2021;4(17):5355.

DOI: 10.3390/en14175355.

Aly AM, Hussein AK, Younis O, Alsedais N, Kolsi L. Double-diffusive convection of two rods in a novel cavity saturated by porous media and suspended by nano-encapsulated phase change materials. Waves in Random and Complex Media; 2022. DOI: 10.1080/17455030.2022.2100001

Kolsi L, Ghachem K, Larguech S, AlNemer G. Numerical investigation of the double diffusive convection in 3D trapezoidal solar still equipped with conductive fins. Mathematics. 2022; 10:2115.

Available:https://doi.org/10.3390/math10122115

Özişik MN, Orlande HRB, Colaço MJ, Cotta RM. Finite difference methods in heat transfer. CRC Press; 2nd edition, 2017. Available:https://doi.org/10.1201/9781315121475

LeVeque RJ. Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-dependent Problems. Society for Industrial and Applied Mathematics; 1st edition; 2007.

Mahmoudi AH, Pop I, Shahi M Talebi F. MHD natural convection and entropy generation in a trapezoidal enclosure using Cu–water nanofluid. Comput. Fluids. 2013; 72:46‑6 DOI: 10.1016/j.compfluid.2012.11.014.

Ouyahia SE, Benkahla YK, Labsi N. Numerical study of the hydrodynamic and thermal proprieties of titanium dioxide nanofluids trapped in a triangular geometry. Arab. J. Sci. Eng. 2016; 41(5)1995‑2009. DOI: 10.1007/s13369-016-2055-0.

Aydin O, Yang WJ. Mixed convection in cavities with a locally heated lower wall and moving sidewalls. Numerical Heat Transfer, Part A: Applications: An International Journal of Computation and Methodology. 2000;37(7):695- 710. Available:http://dx.doi.org/10.1080/104077800274037.

  • Abstract View: 37 times
    PDF Download: 30 times

Download Statistics

  • Linkedin
  • Twitter
  • Facebook
  • WhatsApp
  • Telegram
Make a Submission

Information

  • For Readers
  • For Authors
  • For Librarians

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo


Copyright © 2010 - 2023 Asian Journal of Physical and Chemical Sciences. All rights reserved.