Experimental Investigation for Augmentation of Thermal Performance of Solar Air Collector

Souleymane Sinon *

Laboratoire d’Energies Thermiques Renouvelables (LETRE), Université Joseph KI-ZERBO, Ouagadougou, Burkina Faso.

Salifou Tera

Laboratoire d’Energies Thermiques Renouvelables (LETRE), Université Joseph KI-ZERBO, Ouagadougou, Burkina Faso.

Oumar Sanogo

Laboratoire des Systèmes d’Énergie Renouvelable et Environnement (LASERE), Institut de Recherche en Sciences Appliquées et Technologies (IRSAT/CNRST), Burkina Faso.

Sayouba Sandwidi

Laboratoire de Physique et de Chimie de l’Environnement (LPCE), Université Joseph KI-ZERBO, Ouagadougou, Burkina Faso.

Bruno Korgo

Laboratoire d’Energies Thermiques Renouvelables (LETRE), Université Joseph KI-ZERBO, Ouagadougou, Burkina Faso.

Sié Kam

Laboratoire d’Energies Thermiques Renouvelables (LETRE), Université Joseph KI-ZERBO, Ouagadougou, Burkina Faso.

*Author to whom correspondence should be addressed.


Abstract

This paper presents a study of the thermal performance of a solar air collector used to heat the drying air of a fruit and vegetable dryer. The prototype collector could be a viable solution to improve energy efficiency and food security in Burkina Faso and other developing countries, by contributing to the reduction of post-harvest losses and the increase of income for local agricultural producers. The collector is first realized by using black painted cans as air ducts, perforated to increase turbulence, and a glass covering the collection surface. After realization, the collector is connected to the dryer and a measurement campaign is conducted to evaluate the thermal performance of it. The measured parameters are the sunshine and the air temperature by keeping the air speed fixed at 0.3 m/s. The analysis of the results shows an important variation of the air temperature difference going from 0.1°C to 74.4°C, between the inlet and the outlet of the collector for an irradiation which varies between 142 W/m2 and 837 W/m2. The black painted surface of the air ducts as well as the increase in turbulence contributed to improve the efficiency of the collector which varies between 0.94% and 50.68% and allowing to record air temperatures ranging from 27.2°C to 69.2°C inside the dryer. This temperature range is favorable for the drying of most food products.

Keywords: Solar collector, forced convection, experimentation, performance, drying, turbulence


How to Cite

Sinon , S., Tera , S., Sanogo , O., Sandwidi , S., Korgo , B., & Kam , S. (2023). Experimental Investigation for Augmentation of Thermal Performance of Solar Air Collector. Asian Journal of Physical and Chemical Sciences, 11(3), 1–8. https://doi.org/10.9734/ajopacs/2023/v11i3201


References

Karsli S. Performance analysis of new-design solar air collectors for drying applications. 2007;32:1645–1660.

Muthukumaran J, Senthil R. Experimental performance of a solar air heater using straight and spiral absorber tubes with thermal energy storage. July, 2021; 603203.

Agrawal Y, et al. Évaluation expérimentale des performances hydrothermiques d ’ un aérotherme solaire à plaque rugueuse discrète. April, 2022;560078.

Abene A, Dubois V, Le Ray M, Ouagued A. Study of a solar air flat plate collector: Use of obstacles and application for the drying of grape. J. Food Eng. 2004;65(1): 15–22.

Ben-Amara M, Houcine I, Guizani AA, Maalej M. Efficiency investigation of a new-design air solar plate collector used in a humidification-dehumidification desalination process. Renew. Energy. 2005;30(9):1309–1327.

Kumar R, Verma SK, Sharma VK. Performance enhancement analysis of triangular solar air heater coated with nanomaterial embedded in black paint. Mater. Today Proc. 2019;26(March): 2528–2532.

Yağız E, Şahinkesen İ, Kusun B, Doguş A. Amélioration des performances d ’ un capteur d ’ air solaire non vitré à l ’ aide de tubes à mailles et d ’ un revêtement d ’ absorbeur nano - amélioré Fe3O4. 2023; February:127704.

Esen H. Experimental energy and exergy analysis of a double-flow solar air heater having different obstacles on absorber plates. Build. Environ. 2008;43(6):1046–1054.

Eizenga D. Burkina Faso. Africa Yearb. 2016;12:53–63.

Azoumah Y, Ramdé EW, Tapsoba G, Thiam S. Siting guidelines for concentrating solar power plants in the Sahel: Case study of Burkina Faso. Sol. Energy. 2010;84(8):1545–1553.

Compaore A. Etude énergétique d’un séchoir hybride solaire-gaz pour applications au séchage de l’oignon « Violet de Galmi » Thèse de doctorat en Physique Appliquée(Université Ouaga I Pr Joseph KI-ZERBO, Burkina Faso); 2016.

Dissa AO, Bathiebo J, Kam S, Savadogo PW, Desmorieux H, Koulidiati J. Modelling and experimental validation of thin layer indirect solar drying of mango slices. Renew. Energy. 2009;34(4):1000–1008.