Formulation and Thermomechanical Characterization of Earth-based Biosourced Composites: Cases of Clay-Hibiscus cannabinus L. Fiber, Clay-sawdust and Clay- Oryza sativa Husk
Sandwidi Sayouba *
UJKZ-ED/ST –Laboratoire de Physique et de Chimie de l’environnement (LPCE); 03 BP 7021 Ouagadougou, Burkina Faso
Haro Kayaba
Institut de Recherche en Sciences Appliquées et Technologies/Centre National de la Recherche Scientifique et Technologique (IRSAT/CNRST), 03 BP 7047 Ouagadougou, Burkina Faso
Dabilgou Téré
Centre Universitaire de Ziniaré, 03 BP 7021 Ouagadougou 03, Burkina Faso
Sinon Souleymane
UJKZ-UFR/SEA, Laboratoire d’Energie Thermique et Renouvelable (LETRE), 03 BP 7021 Ouagadougou, Burkina Faso.
Sanogo Oumar
Institut de Recherche en Sciences Appliquées et Technologies/Centre National de la Recherche Scientifique et Technologique (IRSAT/CNRST), 03 BP 7047 Ouagadougou, Burkina Faso
Koulidiati Jean
UJKZ-ED/ST –Laboratoire de Physique et de Chimie de l’environnement (LPCE); 03 BP 7021 Ouagadougou, Burkina Faso
Bere Antoine
UJKZ-ED/ST –Laboratoire de Physique et de Chimie de l’environnement (LPCE); 03 BP 7021 Ouagadougou, Burkina Faso
*Author to whom correspondence should be addressed.
Abstract
This work concerns the technical study of implementation, thermal and mechanical characterization of a composite material based on clay and plant fibers, in order to meet the need for bioclimatic and sustainable houses. The objective was to find the proportions of clay and fibers to obtain a mixture that would give better thermal properties. A characterization of the thermal properties was made thanks to the KD2 Pro analyzer on samples of various formulas of mixture clay-plant fibers. The results obtained showed that the thermal properties such as thermal conductivity and thermal diffusivity of the clay-fiber mixture samples decrease with the increase of the fiber content in the mixture. Thus, the thermal conductivity of the samples varies from 0.85 to 0.65 W/m.K; from 0.88 to 0.72 W/m.K and from 0.83 to 0.75 W/m.K respectively with Hibiscus cannabinus L. fiber, sawdust and Oryza sativa husk. As for the thermal diffusivity, it varies from 0.37 to 0.25 mm2/s; from 0.45 to 0.30 mm2/s and from 0.47 to 0.27 mm2/s respectively with the addition of Hibiscus cannabinus L. fibers, sawdust and Oryza sativa husk. In sum, the earth samples stabilized with Hibiscus cannabinus L. fibers offer better thermal properties for the construction of bioclimatic houses.
Keywords: Composite material, bioclimatic houses, thermal conductivity, thermal diffusivity
How to Cite
References
Thiers S. Energy and environmental balances of positive energy buildings, Ecole Nationale Superieure Des Mines De Paris, France; 2008.
Taallah B, Guettala A, Guettala S, Kriker A. Mechanical properties and hygroscopicity behavior of compressed earth block filled by date palm fibers. Constr. Build. Mater. May 2014;59: 161-168.
DOI: 10.1016/j.conbuildmat.2014.02.058
Millogo Y, Morel JC, Aubert JE, Ghavami K. Experimental analysis of Pressed Adobe Blocks reinforced with Hibiscus cannabinus fibers. Constr. Build. Mater. Feb. 2014;52:71‑78. DOI: 10.1016/j.conbuildmat.2013.10.094.
Mesbah A, Morel JC, Walker P, Ghavami Kh. Development of a direct tensile test for compacted earth blocks reinforced with natural fibers. J. Mater. Civil. Eng. Feb. 2004;16(1):95‑98.
DOI:10.1061/(ASCE)0899-1561(2004)16:1(95)
Akil HM, Omar MF, Mazuki AAM, Safiee S, Ishak ZAM, Abu Bakar A. Kenaf fiber reinforced composites: A review. Mater. Des. Sept. 2011;32(8‑9):4107‑4121.
DOI: 10.1016/j.matdes.2011.04.008
Labat M, Magniont C, Oudhof N, Aubert JE. From the experimental characterization of the hygrothermal properties of straw-clay mixtures to the numerical assessment of their buffering potential. Build. Approx. Feb. 2016;97:69‑81. DOI:10.1016/j.buildenv.2015.12.004
Soulama S. Mechanical and thermal characterization of biocomposites with a recycled polystyrene matrix reinforced with cotton hulls (Gossypium hitsutum L.) or Kenaf wood particles (Hibiscus Cannabinus L.). Belfort University of Technology – Montbeliard; 2014.
Ouedraogo M, Dao K, Millogo Y, Seynou M, Aubert JE, Gomina M. Influence of kenaf fibers (Hibiscus altissima) on the physical and mechanical properties of adobes. 2017;17.
Arbaoui S, Campanella B, Paul R, Bettaieb T. Ethnobotanical, pharmacological and agro-industrial data on a promising plant: kenaf (Hibiscus cannabinus L.). Phytotherapy. Oct. 2014;12(5):292-296.
DOI: 10.1007/s10298-014-0858-2
Neya B. Valorization of biomass from Burkina Faso: feasibility of particle boards made from agricultural waste and research into new biocides for the preservation of wood from naturally sustainable species. Henri Poincaré University, Nancy -1; 2018.
Ouattara S. Research for lightweight bricks: Design and characterization of raw bricks based on clay and sawdust stabilized with Portland cement. Thesis, Felix Houphouet Boigny; 2013.
Decagon Devices Inc. KD2 Pro Thermal Properties Analyzer; February 29 2016.
Alavéz-Ramírez R, Montes-García P, Martínez-Reyes J, Altamirano-Juárez DC, Gochi-Ponce Y. The use of sugarcane bagasse ash and lime to improve the durability and mechanical properties of compacted soil blocks. Constr. Build. Mater. Sept. 2012;34:296‑305. DOI: 10.1016/j.conbuildmat.2012.02.072
Guillaud H, Houben H. Treaty of earthen construction; 2015.
Moevus M, Anger R, Fontaine L. Hygro-thermo-mechanical properties of earthen materials for construction: a literature review. Open Sci. June 2014;11. [Online].
Available:https://hal.archives-ouvertes.fr/hal-01005948
Millogo Y, Morel JC, Aubert JE, Ghavami K. Experimental analysis of pressed adobe blocks reinforced with Hibiscus cannabinus fibers. Constr. Build. Mater. Feb. 2014;52: 71‑78.
DOI: 10.1016/j.conbuildmat.2013.10.094.
Lawane A, Vinai R, Pantet A, Thomassin JH, Messan A. Hygrothermal features of laterite dimension stones for sub-saharan residential building construction. J. Mater. Civil. Eng. Jul. 2014;26(7):05014002.
DOI:10.1061/(ASCE)MT.1943-5533.0001067
Toguyeni DYK, Lawane A, Zoma F, Khamis G. Formulation of compressed earth blocks stabilized with lime and hibiscus sabdariffa fibers showing good thermal and mechanical properties. 2018; 6:8.
RIGASSI V, GUILLAUD H, HUGO H, GALER T. compressed earth blocks volume I. production manual. CRATerre-EAG. 1995; I. Germany: Hochl-Druck, Bad Hersfeld.
Chen X, Wu S, Zhou J. Influence of porosity on compressive and tensile strength of cement mortar. Constr. Build. Mater. March 2013;40:869-874.
DOI: 10.1016/j.conbuildmat.2012.11.072
Madsen B, Thygesen A, Lilholt H. Plant fiber composites – porosity and stiffness. Compos. Science. Technol. June 2009;69(7‑8):1057-1069.
DOI: 10.1016/j.compscitech.2009.01.016
Kolawole FO, Olugbemi OM, Kolawole SK, Owa AF, Ajayi ES. Fracture toughness and strength of bamboo-fiber reinforced laterite as building block material. Univers. J. Mater. Science. July. 2017;5(3):64‑72.
DOI: 10.13189/ujms.2017.050302
Allègue L, Zidi M, Sghaier S. Physical and mechanical properties of cements reinforced with Posidonia fibers. 2009;5.
Belayachi N, Hoxha D, Redikutseva I. Comparative study of the hygrothermal behavior of materials based on plant fibers. 2015;9.
Mansour MB, Jelidi A, Cherif AS, Jabrallah SB. Optimizing thermal and mechanical performance of compressed earth blocks (CEB). Constr. Build. Mater. Feb. 2016; 104:44‑51.
DOI: 10.1016/j.conbuildmat.2015.12.024
Nshimiyimana P, Messan A, Courard L. Physico-mechanical and hygro-thermal properties of compressed earth blocks stabilized with industrial and agro by-product binders. Materials. August 2020; 13(17):3769.
DOI: 10.3390/ma13173769
Zoma F, Toguyeni DYK, Coulibaly O, Hassel I, Ouedraogo A. Potentials of an eco-friendly composite in hot-dry climate. J. Renew. Mater. Jan. 2018;6(1): 47‑54.
DOI: 10.7569/JRM.2017.634147