Search for Qualified Soil for the Production of Low-Energy Biobased Composite Materials
Sandwidi Sayouba *
UJKZ-ED/ST, Laboratoire de physique et de chimie de l’environnement (LPCE); 03 BP 7021 Ouagadougou, Burkina Faso.
Haro Kayaba
Institut de Recherche en Sciences Appliquées et Technologies/Centre National de la Recherche Scientifique et Technologique (IRSAT/CNRST), 03 BP 7047, Ouagadougou, Burkina Faso.
Dabilgou Téré
Centre Universitaire de Ziniaré; 03 BP 7021 Ouagadougou 03, Burkina Faso.
Sinon Souleymane
UJKZ-UFR/SEA, Laboratoire d’Energie Thermique et Renouvelable (LETRE), 03 BP 7021, Ouagadougou, Burkina Faso.
Sanogo Oumar
Institut de Recherche en Sciences Appliquées et Technologies/Centre National de la Recherche Scientifique et Technologique (IRSAT/CNRST), 03 BP 7047, Ouagadougou, Burkina Faso.
Koulidiati Jean
UJKZ-ED/ST, Laboratoire de physique et de chimie de l’environnement (LPCE); 03 BP 7021 Ouagadougou, Burkina Faso.
Bere Antoine
UJKZ-ED/ST, Laboratoire de physique et de chimie de l’environnement (LPCE); 03 BP 7021 Ouagadougou, Burkina Faso.
*Author to whom correspondence should be addressed.
Abstract
The development of earth-based bio-sourced materials requires a thorough analysis of the study soil. For the present study, we took five (05) soil samples from a tunnel-digged quarry in the layer between 0.5 m and 5 m : white clay (MSB-BL), red clay (MSB-RG), weak clay or sandy clay (MSB-FB), strong clay (MSB-FR) and mixture (MSB-ME). To verify the quality of these five (05) soils samples, their intrinsic properties were determined at the National Building and Public Works Laboratory (LNBTP). These included grain size, clay content, specific weight, loss on ignition and moisture content. These analyses revealed that MSG-RG and MSG-BL clays have fine fractions of 64.28% and 47.85% respectively; clay fractions of 27.51% and 20.61% respectively; and methylene blue values in the range (6;8). Their plasticity indices are in the range (20;40). These two (02) clays thus meet the requirements in terms of granularity, and their relatively high clay fraction will favor their adhesion with admixtures such as plant fibers. What's more, the particle size distribution of these clays is within the ideal CRAterre range for soils used in the manufacture of BTC or adobes, so they are all eligible.
Keywords: Earth, granulometry, argillosity, composite materials
How to Cite
References
UN-Habitat, Ed, State of Latin American and Caribbean cities 2012: Towards a new urban transition. Nairobi: UN-HABITAT; 2012.
Pacheco-Torgal F, Jalali S. Earth construction: Lessons from the past for future eco-efficient construction, Construction and Building Materials. 2012;29:512-519.
DOI: 10.1016/j.conbuildmat.2011.10.054.
Bahobail MA. The mud additives and their effect on thermal conductivity of adobe bricks. JES. Journal of Engineering Sciences. 2012;40(1):21-34.
DOI: 10.21608/jesaun.2012.112711.
Morton T. Earth masonry: Design and construction guidelines. IHS BRE Press; 2008.
Ouedraogo KAJ, Aubert JE, Tribout C, Escadeillas G. Stabilization of earth bricks using low cement or lime contents relevant, Construction and Building Materials. 2020;236:117578.
DOI: 10.1016/j.conbuildmat.2019.117578.
Taallah B, Guettala A, Guettala S, Kriker A. Mechanical properties and hygroscopicity behavior of compressed earth block filled by date palm fibers, Construction and Building Materials. 2014; 59:161-168.
DOI: 10.1016/j.conbuildmat.2014.02.058
Millogo Y, Morel JC, Aubert JE, Ghavami K. Experimental analysis of pressed adobe blocks reinforced with Hibiscus cannabinus fibers. Construction and Building Materials. 2014;52:71-78.
DOI: 10.1016/j.conbuildmat.2013.10.094
Mesbah A, Morel JC, Walker P, Kh. Ghavami. Development of a direct tensile test for compacted earth blocks reinforced with natural fibers, J. Mater. Civ. Eng. 2004;16(1):95-98.
DOI:10.1061/(ASCE)0899-1561(2004)16:1(95).
Akil HM, Omar MF, Mazuki AAM, Safiee S, Ishak ZAM, Abu Bakar A. Kenaf fiber reinforced composites: A review, Materials & Design. 2011;32(8-9):4107-4121.
DOI: 10.1016/j.matdes.2011.04.008.
Millogo Y, Aubert JE, Hamard E, Morel JC. How properties of kenaf fibers from Burkina Faso contribute to the reinforcement of earth blocks. Materials. 2015;8(5):2332-2345.
DOI: 10.3390/ma8052332.
Labat M, Magniont C, Oudhof N, Aubert JE. From the experimental characterization of the hygrothermal properties of straw-clay mixtures to the numerical assessment of their buffering potential, Building and Environment. vol. 2016;97:69-81. DOI: 10.1016/j.buildenv.2015.12.004.
Malbila E, Toguyeni DYK, Bamogo S, Lawane A, Koulidiati J. Thermophysical and mechanical characterization of local stabilized materials suitable for buildings in dry and hot climate. 2018;6(6).
NF P 94-056, Particle size analysis: Method by dry sieving after washing. AFNOR. 1996;16.
NF P 94-057, Particle size analysis of soils: Method by sedimentation. AFNOR; 1992.
NF P 94-051, Determination of Atterberg limits: cup liquid limit - roller plasticity limit. AFNOR; 1993.
NF P 94-068, Measurement of the methylene blue adsorption capacity of soil or rocky material: Determination of the methylene blue value of soil or rocky material by the task test, AFNOR; 1998.
Livert M. Swelling clay soils, Waza-Maltum experimental site. Summary report, Inst. Science. Tech. Equip. Dev (I.S.T.E.D); 1988.
Aliprandi G. Refractory materials and technical ceramics-I elements of ceramurgy and technology; 1979.
Philliponate E. Foundations and earthworks, Editions Eyrolles, Paris. 1979;393.
Bolle M, Joubert Setra M. NF P11-300, Classification of materials usable in the construction of embankments and road infrastructure capping layers, France. 1992;23.
Code of good practice for the treatment of soils with lime and/or cement, Recommendations R 74 / 04, Published by the Road Research Center Establishment recognized by application of the Decree-Law of January 30, 1947 Boulevard de la Woluwe 42 - 1200 Brussels. 1947 ;6 .
Guillaud H, Houben H. Earth construction treaty; 2015.