Collision of Incident Electrons with Liquid Water Molecules: Study of Linear Energy Transfer (LET)

Kane Issa *

University Abdou Moumouni of Niamey, Niger.

Aboubacar Almoustapha

University Abdou Moumouni of Niamey, Niger.

Ousmane Manga Adamou

University Abdou Moumouni of Niamey, Niger.

*Author to whom correspondence should be addressed.


Abstract

We used GAMOS software to simulate the interaction of electrons in liquid water. In our work, the chosen parameter, the Linear Energy Transfer (LET), is studied in an energy range from 2.5 eV to 100 MeV. The results obtained were analyzed and compared with experimental data and literature. A very good agreement emerged.

Also the analysis of the LET curve of the medium crossed presents a maximum of 37.0626 MeV/mm corresponding to an electron energy of 102.447 eV.  For energies below this value, the energy loss is greater. On the other hand, for energies higher than this value, there is less energy loss.

Keywords: Electron, liquid water, ionization, collision, GAMOS, GEANT4, LET


How to Cite

Issa , K., Almoustapha , A., & Adamou , O. M. (2023). Collision of Incident Electrons with Liquid Water Molecules: Study of Linear Energy Transfer (LET). Asian Journal of Physical and Chemical Sciences, 11(4), 20–27. https://doi.org/10.9734/ajopacs/2023/v11i4211


References

Schutten J, De Heer FJ, Moustafa HR, Boerboom AJH, Kistemaker J. Gross- and partial-ionization cross section for electrons on water vapor in the energy range 0.1–20 keV J. Chem. Phys. 1966;44:3924–8.

Bolorizadeh MA, Rudd ME. Angular and energy dependence of cross sections for ejection of electrons from water vapor. I. 50–2000-eV electron impact Phys. Rev. A. 1986;33:882–87.

Tsai YS. Pair production and bremsstrahlung of charged leptons Rev. Mod. Phys. 1974;46:815–51.

Dingfelder M, Ritchie RH, Turner JE, Friedland W, Hamm RN. Comparisons of calculations with PARTRAC and NOREC: transport of electrons in liquid water Radiat. Res. 2008;169:584–94.

Bousis C, Emfietzoglou D, Hadjidoukas P, Nikjoo H, Pathak A. Electron ionization cross-section calculations for liquid water at high impact energy Nucl. Instrum. Methods Phys. Res. B. 2008;266:1185– 92.

Djuric NL, Cadez IM, Kurepa MV. H2O and D2O total ionization cross section by electron impact Int. J. Mass Spectrom. Ion. Process. R7. 1988;83.

ICRU Report 49. Stopping powers and. Ranges for protons and. Alpha Particles. Issued; 1993.

Agostinelli S, et al. Geant4—a simulation toolkit. Nuclear Instruments and methods in physics research section A: Accelerators, spectrometers, detectors and associated equipment. 2003;506(3):250–303 Available:https://doi.org/10.1016/S0168-9002(03)01368-8

Arce P, Rato P, Canadas M, Lagares JI. GAMOS: A Geant4-based easy and flexible framework for nuclear medicine applications. In: IEEE nuclear science symposium conference record. Presented at the IEEE nuclear science symposium conference record. 2011;3162–3168. DOI: 10.1109/ NSSMIC.2008.4775023

Arce P, Rato P, Canadas M, Lagares JI. GAMOS: A Geant4-based easy and flexible framework for nuclear medicine applications. In: 2008 IEEE nuclear science symposium conference record. Presented at the IEEE nuclear science symposium conference record. 2008;3162–3168. DOI: 10.1109/ NSSMIC.2008.4775023

Available:http://www-zeuthen.desy.de/geant4/g4course2010.

Rudd ME. Cross sections for production of secondary electrons by charged particles Radiat. Prot.Dosim. Abramowitz M and Stegun I A 1972 Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (New York: Dover). 1990;31:17–2224.

Uehara S, Nikjoo H, Goodhead DT. Cross-sections for water vapour for the Monte Carlo electron track structure code from 10 eV to the MeV region Phys. Med. Biol. 1993;38:1841–58.

Nikjoo H, Uehara S, Emfietzoglou D, Brahme A. Heavy charged particles in radiation biology and biophysics New J. Phys; 2008. DOI: 10 075006

Cobut V, Frongillo Y, Patau JP, Goulet T, Fraser MJ, Jay-Gerin JP. Monte-Carlo simulation of fast electron and proton tracks in liquid water—I. Physical and physicochemical aspects Radiat. Phys. Chem. 1998;51(49):229–43.

Gümü¸s H. Simple stopping power formula for low and intermediate energy electrons Radiat. Phys. Chem. 2005;72:7–12.

Paretzke HG. Simulation von elektronenspuren im energiebereich 0.01-10 keV in Wasserdampf. GSF-Berich 24/88. Gesellshaft für Strahlen-und Umweltforschung, München; 1988.

Brodsky AB. CRC Handbook of radiation measurement and protection (West Palm Beach, FL: CRC Press); 1978.

Watt D. Quantities for dosimetry of ionizing radiations in liquid water (London, UK: Taylor and Francis); 1996.

ICRU. Stopping powers and ranges for electrons and positrons ICRU Report 37 (Bethesda, MD: International Commission on Radiation Units and Measurements); 1984.

ICRU. Linear energy transfer ICRU Report 16 (Bethesda, MD: International Commission on Radiation Units and Measurements); 1970.

Ianik Plante, al. Cross sections for the interactions of 1 eV–100 MeV electrons in liquid water and application to Monte-Carlo simulation of HZE radiation tracks; New Journal of Physics 11. 2009;063047:24.