Rashba Spin-orbit Interaction in Semiconductor Nanostructures (Review)

Main Article Content

Ibragimov Behbud Guseyn


In this work I review of the theoretical and experimental issue related to the Rashba Spin-Orbit interaction in semiconductor nanostructures. The Rashba spin-orbit interaction has been a promising candidate for controlling the spin of electrons in the field of semiconductor spintronics. In this work, I focus study of the electrons spin and holes in isolated semiconductor quantum dots and rings in the presence of magnetic fields. Spin-dependent thermodynamic properties with strong spin-orbit coupling inside their band structure in systems are investigated in this work. Additionally, specific heat and magnetization in two dimensional, one-dimensional quantum ring and dot nanostructures with Spin Orbit Interaction are discussed.

Spin-orbit interaction, Rashba effect, two dimension electron gas, one-dimensional ring, quantum wire, quantum dot, semiconductor nanostructures

Article Details

How to Cite
Guseyn, I. B. (2020). Rashba Spin-orbit Interaction in Semiconductor Nanostructures (Review). Asian Journal of Physical and Chemical Sciences, 8(2), 32-44. https://doi.org/10.9734/ajopacs/2020/v8i230115
Review Article


Greiner W. Relativistic quantum mechanics. Springer; 1987.

Winkler R. Spin-orbit coupling effects in two-dimensional electron and hole systems (Springer Berlin); 2003.

Dresselhaus G. Spin-orbit coupling effects in zinc blende structures phys. Rev. 1955;100:580.

Bychkov YA, Rashba EI. Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. Journal of Physics C:Solid State Physics. 1984;17: 6039.

Rashba E. Effects of rashba spin-orbit coupling, Zeeman splitting and gyrotropy in two-dimensional cavity polaritons under the influence of the Landau quantization Fiz. Tverd. Tela (Leningrad). 1960;2:1224.

Stein D, Klitzing KV, Weimann G. Electron spin resonance on GaAs−AlxGa1−xAs Heterostructures Phys. Rev. Lett. 1983;51: 130.

Stormer HL, Schlesinger Z, Chang A, Tsui DC, Gossard AC, Wiegmann W. Energy structure and quantized hall effect of two-dimensional holes phys. Rev. Lett. 1983;51:126.

Datta S, Das B. Electronic analog of the electro‐optic modulator Appl. Phys. Lett. 1990;56:665.

Kikkawa JM, Smorchkova IP, Samarth N, Awschalom DD. Room-temperature spin memory in two-dimensional electron gases science. 1997;277:1284-1287.

de Andrada e Silva EA, La Rocca GC, Bassani F. Spin-orbit splitting of electronic states in semiconductor asymmetric quantum wells Phys. Rev. B. 1997;55: 16293.

Voskoboynikov O, Lee CP. Spin–orbit interaction and all-semiconductor spintronics. Journal of Superconductivity. 2003;16:361–363.

Khomitsky DV. Scattering on the lateral one-dimensional superlattice with spin-orbit coupling Phys. Rev. B. 2007;76: 033404.

Dyakonov MI, Perel VI. Spin relaxation of conduction electrons in non-centrosymmetric semiconductors, Soviet Physics Solid State. 1972;13(12):3023-3026.

Dyakonov MI, Kachorovskii VY. Spin relaxation of two dimensional electrons in noncentrosymetric semiconductors, soviet physics: Semiconductors, Sov. Phys. Semicond. 1986;20:110.

Koralek JD, Weber CP, Orenstein J, Bernevig BA,. Zhang SC, Mack S, Awschalom DD. Emergence of the persistent spin helix in semiconductor quantum wells. Nature _London. 2009; 458:610.

Kleinert P, Bryksin VV. Electric-field-induced long-lived spin excitations in two-dimensional spin-orbit coupled systems. Phys. Rev. B. 2009;79:045317.

Duckheim M, Maslov DL, Loss D. Dynamic spin-Hall effect and driven spin helix for linear spin-orbit interactions, Phys. Rev. B. 2009;80:235327.

Tokatly IV, Ya E. Sherman, Ann. Phys. 2010;325:1104.

Pershin YV. Phys. Rev. B. Long-Lived Spin Coherence States in Semiconductor Hetero-structures. 2005;71:155317.

Kikkawa JM, Awschalom DD. Lateral drag of spin coherence in gallium arsenide. Nature. 1999;397:139.

Sanvito S, Theurich G, Hill NA. Density func-tional calculations for III–V diluted ferromagnetic semi-conductors: a review. J Supercond. 2002;15:85.

Kruchinin S, Nagao H, Aono S, Modern aspect of superconductivity: theory of superconductivity. World Scientific. 2010; 232.

Shu-Ping Shan, Shi-Hua Chen. Influence of magnetic field and Coulomb field on the Rashba effect in a triangular quantum well Pramana – J. Phys. 2020;94:15.


Ya-FeiHao. Spin-orbit interactions in semiconductor superlattice Physics Letters A; 2019.


Ya Feng, Qi Jiang, Baojie Feng, Meng Yang ,Tao Xu , Wenjing Liu, Xiufu Yang, Masashi Arita, Eike F. Schwier, Kenya Shimada , Harald O. Jeschke , Ronny Thomale, Youguo Shi, Xianxin Wu8, Shaozhu Xiao, Shan Qiao&Shaolong He . Rashba-like spin splitting along three momentum irections in trigonal layered PtBi2 Nature Communications | Available:https://doi.org/10.1038/s41467-019-12805.

Yu IA. Usachov D, Nechaev A, Poelchen G, Guttler M, Krasovskii EE, Schulz S, Generalov A, Kliemt K, Kraiker A, Krellner C, Kummer K, Danzenb¨acher S, Laubschat C, Weber AP, Chulkov EV, Santander-Syro AF, Imai T, Miyamoto K, Okuda T, Vyalikh DV. Observation of a cubic Rashba effect in the surface spin structure of rare-earth ternary materials. . arXiv: 2002.01701 v1 [cond –mat. mes-hall.]; 2020.

Aharonov Y, Bohm D. Significance of electromagnetic potentials in the quantum theory phys. Rev. 1959;115(3):485-491.

Wu TT, Yang CN. Concept of nonintegrable phase factors and global formulation of gauge fields. Rev. D. 1975;12:3845.

Peshkin M, Tonomura A. The aharonov–bohm effect, in lecture notes in physics. Springer-Verlag, Berlin. 1989;340 1989.

Fai Cheung H, Gefen Y, Riedel EK, Shih WH. Persistent currents in small one-dimensional metal rings, Phys. Rev. B. 1988;37:6050.

Loss D, Goldbart P. Period and amplitude halving in mesoscopic rings with spin, Phys. Rev. B. 1991;43:13762.

Moskalets MV. Oscillations of the thermodynamic properties of a one-dimensional mesoscopic ring caused by Zeeman splitting, JETP Lett. 1999;70:602.

Margulis VA, Mironov VA. Magnetic moment of a 2D electron gas with spin-orbit interaction, JETP. 2009;108:656.

Aronov AG, Lyanda-Geller YB, Spin-orbit Berry phase in conducting rings, Phys. Rev. Lett. 1993;70;343.

Wang XF, Vasilopoulos P. Spin-dependent magnetotransport through a mesoscopic ring in the presence of spin-orbit interaction, Phys. Rev. B. 2005;72:165336.

Molnar B, Peeters FM, Vasilopoulos P. Spin-dependent magnetotransport through a ring due to spin-orbit interaction, Phys. Rev. B. 2004;69:155335.

Splettstoesser J, Governale M, Zulicke U. Persistent current in ballistic mesoscopic rings with Rashba spin-orbit coupling, Phys. Rev. B. 2003;68:165341.

Sheng JS, Chang K. Spin states and persistent currents in mesoscopic rings: Spin-orbit interactions, Phys. Rev. B. 2006;74;235315.

Yang X.-E, Zhou Y.-C. Magnetism and structural distortion in the La0.7Sr0.3MnO3 metallic ferromagnet, Phys. Rev. B. 1996;53:10167.

Chen H.-Y, Pietilainen P, Chakraborty T. Electronic optic and magnetic properties of quantum ring in Novel systems,Phys. Rev. B. 2008;78;073407.

Margulis VA, Mironov VA. Magnetic moment of an one-dimensional ring with spin–orbit interaction Physica E. 2011;43:905–908.

Wolf SA et al. Spintronics: a spin-based electronics vision for the future, Science. 2001;294:1488.

Wolff PA. Semiconductors and semimetals, in: J.K. Furdyna, J. Kossut (Eds.), Diluted Magnetic Semiconductors, Academic, New York; 1988.

Chaplik AV, Magarill LI, Effect of the spin-orbit interaction on persistent currents in quantum rings, Superlattice. Microst. 1995;18:4.

Mehdiyev BH, Babayev AM, Cakmak S, Artunc E. Rashba spin-orbit coupling effect on a diluted magnetic semiconductor cylinder surface and ballistic transport, Superlattice, Microst. 2009;46:4.

Babanlı AM, Ibragimov BG. Specific heat in diluted magnetic semiconductor quantum ring Superlattices and Microstructures. 2017;111:574-578.

Babanlı AM, Ibragimov BG. Magnetic moment of electrons in diluted magnetic semiconductor quantum ring. AJP Fizika. 2019;XXV(01);35-38.

Babanlı AM, Ibragimov BG. Magnetic moment of the lattice of non-interacting diluted magnetic semiconductor ring .Modern Trends in Physics International Conference; 2019 Baku.

Babanlı AM, Ibragimov BG. Aharonov-bohm paramagnetism” and compensation points in noninteracting diluted magnetic semiconductor quantum ring. Journal of Magnetism and Magnetic Materials. 2020;495;165882.

Loss D, DiVincenzo DP. Quantum computation with quantum dots, Phys. Rev. A. 1998;57:120.

Vandersypen LMK et al. in Quantum Computing and Quantum Bits in Mesoscopic Systems (Kluwer Academic, New York, 2003); quant-ph/0207059. A.V. Khaetskii and Y.V. Nazarov, Spin relaxation in semiconductor quantum dots, Phys. Rev. B. 2000;61(12):639.

Can-Ming Hu, Junsaka Nitta, Tatsushi Akazaki, Jiro Osaka, Pfeffer P, Zawadzki W, Polaronic and bound polaronic effects in the energy states of an electron in a two-dimensional parabolic quantum dot in the presence of Rashba spin- orbit interaction, Phys. Rev. B. 1999;60: 7736.

de Andrada e Silva EA, La Rocca GC, Bassani F. Spin-orbit splitting of electronic states in semiconductor asymmetric quantum wells, Phys. Rev. B. 1997;55(16):293.

Johnson NF. J. Phys.: Condens. Matter 7 965 .Quantum dots: few-body, low-dimensional systems; 1995.

Datta S, Das B. Appl. Phys. Lett. Electronic analog of the electro-optic modulyator. 1990;56:665. Available:https://doi.org/10.1063/1.102730

Kane BE, A silicon-based nuclear spin quantum computer, Nature London. 1998;393:133.

Kuntal Bhattacharyya, Ashok Chatterjee Polaronic, Bound Polaronic. Effects in the energy states of an electron in a two-dimensional parabolic quantum dot in the presence of rashba spin-orbit interaction aip conference proceedings. 2019;2142: 090008. Available:https://doi.org/10.1063/1.5122452

Bimberg D. Quantum dots: Paradigm changes in semiconductor physics, Semiconductors. 1999;33:951.

Steffens O, Suhrke M, Rössler U, Physica B. 1998;256–258:147.

Taruchaet S al. Spin e ects in semiconductor quantum dot structures, Physica E (Amsterdam). 1998;3:112.

Tamura H. Magneto-photoluminescence in high magnetic fields from InGaAs/GaAs quantum dots formed in tetrahedral-shaped recesses, Physica B. 1998;249–251:210.

Prinz GA, Magnetoelectronics, Science. 1998;282:1660.

Kane BE. A silicon-based nuclear spin quantum computer, Nature (London). 1998;393:133.

Awschalomand DD, Kikkawa JM. Phys. Today. Electron Spin and Optical Coherence in Semiconductors; 1999.

Das S, Sarma J, Fabian X, Hu, I Žutic, Solid State Commun. Spin-Polarized Bipolar Transport and Its Applications. 2001;119:207.

Lossand D, DP DiVincenzo, Phys. Rev. Quantum Computation with Quantum Dots. 1998;57-120.

Voskoboynikova O. Magnetic properties of parabolic quantum dots in the presence of the spin–orbit interaction.

Boyacioglu B, Chatterjee A. J. Appl. Phys.. Heat capacity and entropy of a GaAs quantum dot with Gaussian Confinement. 2012;112:083514.

DOI: 10.1063/ 1.4759350.