Dynamics Simulation of Radial Flow Water in Aerial Roots of Corn by Deposit of Dew in Atmosphere Aerial Roots Continuum

Main Article Content

Odjounchi Raoufou Yessoufou
Alexis Enagnon Médéhouénou
Gabin Koto N’gobi
Basile Bruno Kounouhéwa


Maize plants have different aerial roots from those that serve as an anchor and develop on the stem and live in the atmosphere. Much literature has reported that aerial roots are able to absorb moisture from the air, and even reduce water loss. But very little is known about the exchange of condensed atmospheric water between the aerial roots and the surrounding air. The main purpose of this article is to simulate the absorption of condensed atmospheric moisture by the aerial roots of corn plants. The evaluation of the amount of dew deposited on the roots and the radial water flow through the root is made using the Penman-Monteith equation and the Fick’s law correlated with the Ohm’s law respectively. The various simulations prove that the aerial roots condense atmospheric humidity and that the latter have expressed the transpiration function for certain angles of inclination with a particularity for the inclination of 30° which, from a certain amount of dew expressed the function of dew absorption. On the other hand, for other inclinations, the roots expressed the function of the absorption of humidity with an optimization for the inclination of 60 °. The absorption and transpiration mechanism needs further studies in the future about the characteristics of the radial conductivity through the parameters which influence the coefficient of radial conductivity in the terminal parts of the root than in the lateral parts. In addition, the comparative study of the Priestley-Taylor and Penman-Monteith models is necessary to better understanding of the specific parameters.

Dew, absorption, transpiration, aerial root.

Article Details

How to Cite
Yessoufou, O. R., Médéhouénou, A. E., N’gobi, G. K., & Kounouhéwa, B. B. (2020). Dynamics Simulation of Radial Flow Water in Aerial Roots of Corn by Deposit of Dew in Atmosphere Aerial Roots Continuum. Asian Journal of Physical and Chemical Sciences, 8(3), 25-37. https://doi.org/10.9734/ajopacs/2020/v8i330119
Original Research Article


Ibrahim B, Karambiri H, Polcher J, Yacouba H, Ribstein P. Changes in rainfall regime over Burkina Faso under the climate change conditions simulated by 5 regional climate models. In: Clim Dyn. 2014;42:1363–1381.

Cook KH, Vizy EK. Impact of climate change on mid-twenty-first century growing seasons in Africa. In: Clim Dyn. 2012;39:2937–2955.

Lemke P, Ren JF, Alley R, Allison L, Carrasco J, Flato G, et al. IPCC. Climate change 2007. Synthesis report. contribution of working groups I, II & III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva. In; 2007.
DOI: 10. 1017/CBO9780511546013.

Rasmussen A, Dobrijevic DP, Ola A, Ishaya FD, Lovelock CE. Aerial root physiol- ogy: reaching for the sky or down to earth?” In: Annual Plant Reviews Online. 2019;2:32. Available:https://doi.org/10.1002/9781119312994.apr0668.

Steffens B, Rasmussen A. The physiology of adventitious roots. In: Plant Physiology. 2016;170.2:603–617. ISSN: 0032-0889.
DOI:10.1104/pp.15.01360.eprint: Available:http://www.plantphysiol.org/content/170/2/603.full.

Organisation des Nations Unies. État des ressources en sols du monde Résumé technique Rome Italie; 2016.

Uso M. Examen regional de la recherche et du développement agricole en Arique. Tech. rep. G CARD; 2010.

Sultan B, Alhassane A, Barbier B, Baron C, Tsogo MBM, Berg A, et al. La question de la vulnérabilité et de l’adaptation de l’agriculture sahélienne au climat au sein du programme AMMA. La Météorologie, Revue Del’atmosphère et Du Climat. 2012;64-72.

Tidjani MA, Akponikpe PBI. Evaluation des stratégies paysannes d’adaptationaux changements climatiques: cas de la production du maïs au nord-bénin. In: Issue Supplement s. 2012;20(2):425– 441.

Doukpolo B. Changements climatiques et productions agricoles dans l’Ouest de la République Centrafricaine. Thèse de Doctorat. Bénin; 2014.

Clus O. Radiative condensers of atmospheric water vapor (dew) as an alternative fresh water source. Theses. Université Pascal Paoli; 2007.

Agam N, Berliner PR. Dew formation and water vapor adsorption in semi-arid environments a review. In: Journal of Arid Environments. 2006;65(572–590):19.
DOI: 10.1016/j.jaridenv.2005.09.004.

Stone EC. The ecological importance of dew”. In: The Quarterly Review of Biology. 1963;38:14.

Halket AC. Some experiments on absorption by the aerial parts of certain salt-marsh plants. In: The New Phytologist. 1911;10(4):121–139. ISSN: 0028646X, 14698137.
Available:http://www.jstor. org/stable/2427078.

Koto n’gobi G, Kounouhewa B, Awanou CN. Contribution à l’évaluation de la hauteur d’humidité atmosphérique condensable pour la correction du stress hydrique chez le maïs”. In: In: Journal de la Recherche Scientifique de l’université de Lomé. 2012;14(11-20):10.

Brett H. Aspects of vessel dimensions in the aerial roots of epiphytic araceae. In: International Journal of Plant Sciences - Int J Plant Sci. 2010;(171)362–369.
DOI: 10.1086/651230.

Liu L, Chen X, Fu X. The transpiration and moisture absorption characteristics of ficus microcarpa (l) aerial roots in the south of china. In: Pakistan Journal of Botany. 2013;48(4):1473–1479.

Gerlein-Safdi C, Koohafkan MC, Chung M, Rockwell FE, Thompson S, Caylor KK. Dew deposition suppresses transpiration and carbon uptake in leaves. In: Agricultural and Forest Meteorology. 2018;12.

Jacobs AFG, Heusinkveld B, Berkowicz S. Dew deposition in the Negev Desert: the biological crust. In: 1st Conference on Fog and Fog Collection, Vancouver. 1998;261–264.

Médéhouénou EA, Kounouhéwa BB, Koutchadé C. Dynamics of water flow in the atmosphere aerial roots continuum. In: Open Journal of Fluid Dynamics. 2018;8:404-415.

Clus O, Ortega P, Muselli M, Milimouk I, Beysens D, and al. Study of dew water collection in humid tropical islands. In: J. Hydrol. 2008;361(159–171):13.

Andrade JL. Dew deposition on epiphytic bromeliad leaves: an important event in a Mexican tropical dry deciduous forest. In: Journal of Tropical Ecology. 2003;19:479–488.
DOI: 10.1017/ S0266467403003535.

Gotsch GS, Nadkarni N, Darby A, Glunk A, Dix M, Davidson K, et al. Life in the treetops: ecophysiological strategies of canopy epiphytes in a tropical montane cloud forest. In: Ecological Monographs. 2015;85(3):393–412.

Lakatos M. Lichens and Bryophytes: Habitats and Species. In. 2011;215:65–87. DOI: 10.1007/978-3-642-19106-0_5.

Tolk J, Howell T, Steiner J, Krieg D, Schneider AD. Role of transpiration suppression by evaporation of intercepted water in improving irrigation efficiency. In: Irrigation Science. 1995;16:89–95.
DOI: 10.1007/BF00189165.

Barradas V, Glez-Medellín M. Dew and its effect on two heliophile understorey species of a tropical dry deciduous forest in Mexico”. In: International Journal of Bioclimatology Biometeorology. 1999;43: 1–7.

DOI: 10.1007/s004840050109.

Alvarado-Barrientos M, Holwerda F, Asbjornsen H, Dawson TE, Bruijnzeel LA. Suppression of transpiration due to cloud immersion in a seasonally dry Mexican weeping pine plantation. In: Agricultural and Forest Meteorology. 2014;186;12–25.
DOI: 10.1016/j.agrformet.2013.11. 002.

Vissin E. Impact de la variabilité climatique et de la dynamique des états de surface sur les écoulements du bassin béninois du fleuve Niger. Thèse de Doctorat de l’Université de Bourgogne. 2007;310.

Gates DM. Energy, plants, and ecology. In: Ecology. 1965;46:1–13.
DOI: 10.2307/ 1935252Âă.

Paltridge GW, Martin C, Platt R. Radiative processes in meteorology and climatology. De Developments in atmospheric science. l’Université du Michigan: Elsevier Scientific Pub. Co. 1976;5:318.

Evett S. Water and energy balances at soil–plant–atmosphere interfaces. In: Dec. 2001;127–188. ISBN: 978-0-8493-0837-6.
DOI: 10. 1201/9781420041651.ch5.

Xiao H. Factors affecting dewfall, its measurement with lysimeters, and its estimation with micrometeorological equations. Ed. by Université Martin Luther. Thèse de Doctorat. 2010;164.

Tournier PH. Water and nutrient uptake by plant roots: modeling, analysis and simulation. Theses. Université Pierre et Marie Curie - Paris VI; 2015.

Fiscus E. The interaction between osmotic and pressure induced flow. In: Plant Physiology. 1975;55:917–922.

Kidron GJ. Analysis of dew precipitation in three habitats within a small arid drainage basin, Negev Highlands, Israel. In: Atmospheric Research. 2000;55(3–4):257–270:14.

Koto n’gobi G, Kounouhewa B, Kouchade C, Anago R, Beysens D. Perception of dew by cereal growers in semi-arid climate (Guéné, North Benin). In: International Journal of Humanities Social Sciences and Education (IJHSSE). 2018;5(9):12.

Tardieu F, Manichon H. Caractérisation en tant que capteur d’eau de l’enracinement du maïs en pacelle cultivée. 1. Discussion des critères d’étude. In: Agron. 1986;(6):345–354.

Tardieu F, Manichon H. Etat structural, enracinement et alimentation hydrique du maïs. Il. Croissance et disposition spatiale du système racinaire. In: Agron. 1987;7:201–211.

De Raissac M. Les études sur les racines au cirad –ca bilan et elements d’orientation. Unité de Recherche Fonctionnement du Peuplement Végétal; 1993.

Riazi A, Matsuda K, Arsland A. Water-stress induced changes in concentrations of proline and other solutes in growing regions of young barley leaves. In: Journal of Experimental Botany. 1985;36:1716–1725.
Available:https://doi.org/10. 1093/jxb/36.11.1716.

Steudle E, Frensch J. Osmotic responses of maize roots. In: Planta. 1989;177:281–295.

Steudle E, Brinckmann E. The osmometer model of the root: water and solute relations of Phaseoluscoccineus. In: Botanica Acta. 1989;102:85–95.

Nonami H, Boyer JS. Origin of growth-induced water potential: Solute Concentration Is Low in Apoplast of Enlarging Tissues”. In: Plant Physiol. 1987;83(3):596–601.
DOI: 10.1104/pp.83.3.596.