Stabilizing Ag Nanoparticles Using Anatase TiO2 and Cu on Al Surface

Main Article Content

Masayoshi Kaneko

Abstract

Chemical adsorption of anatase TiO2, silver nanoparticles (Ag NPs), and Cu particles (Cu Ps) on aluminum (Al) surface yielded an active surface-enhanced Raman scattering (SERS) substrate. TiO2 is known to reduce both silver (Ag) and copper (Cu). In an oxidizing environment, Ag NPs remain unoxidized since Cu has a more negative redox potential than Ag. Ag is therefore protected by Cu from getting oxidized. Although Ag NPs exhibit better SERS activity than Au NPs, Ag is relatively easier to oxidize, limiting the development of Ag-based nanomaterials. Therefore, despite the poor SERS activity of Au nanoparticles than that of Ag nanoparticles, Au nanoparticles have been widely used. Herein, the stabilization of Ag nanoparticles by incorporating a reductive process using anatase TiO2 is reported. The fabricated substrates bearing anatase, Ag NPs, and Cu Ps were stable, as seen by Raman spectra, and remained unchanged for more than 2 months.

Keywords:
SERS, Raman, APTMS, Al, TiO2 Ag nanoparticles.

Article Details

How to Cite
Kaneko, M. (2020). Stabilizing Ag Nanoparticles Using Anatase TiO2 and Cu on Al Surface. Asian Journal of Physical and Chemical Sciences, 8(4), 22-30. https://doi.org/10.9734/ajopacs/2020/v8i430123
Section
Original Research Article

References

Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byme JA, O’shea K, Enterazai MH, Dionysiou DD. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B. 2012;125:331-349.

Moges Tsega, Dejene FB. Influence of acidic pH on the formulaition of TiO2 nanocrystalline powders with enhanced photoluminescence property. Heliyon. 2017;3(2):e00246.

Mitchell C, Groenenboom, Rachel M. Anderson, Derek J. Horton, Yasemin Basdogan, Donald F. Roeper Steven A. Policastro, John A. Keith, Doped Amorphous Ti Oxides To Deoptimize Oxygen Reduction Reaction Catalysis, J. Phys. Chem. C. 2017;121:16825−16830.

Yung-Tao Song, Lu-Yin Lin, Jia-Yo Hong, Enhanced Visible-light Response and Conductivity of the TiO2/reduced graphene oxide/Sb2S3 Heterojunction 16;or Photoelectrochemical Water Oxidation Electrochimica Acta. 2016;211:576–585.

Kotesh Kumarb M, Bhavanib K, Nareshb G, Srinivasb B, Venugopal A. Plasmonic resonance nature of Ag-Cu/TiO2photocatalyst under solarand artificial light: Synthesis, characterization and evaluation of H2Osplitting activity, Applied Catalysis B: Environmental. 2016;199:282–291.

Zhao Zhao TL. Alford, The optimalTiO2/Ag/TiO2 electrode for organic solar cell application with highdevice-specific Haacke figureofmerit, Solar Energy Materials & Solar Cells. 2016; 157:599–603.

Mauro F. La Russa, Andrea Macchia, Silvestro A. Ruffolo, Filomena De Leo, Marianna, Barberio, Pasquale Barone, Gino M. Crisci, Clara Urzì, Testing the antibacterial activity of doped TiO2 for preventing biodeterioration of cultural heritage building materials, International Biodeterioration & Biodegradation. 2014; 96:87-96.

Robert Liu, Wu HS, Ruth Yeh, Lee CY, Yungtse Hung. Synthesis and Bactericidal Ability of TiO2 and Ag-TiO2 Prepared by Coprecipitation Method. Available:https://www.hindawi.com/journals/ijp/aip/640487.pdf

Zengming Zhanga, Yong Hua, Fuyu Qinb, Yutian Ding. DC sputtering assisted nano-branched core–shell TiO2/ZnO electrodes for application in dye-sensitized solar cells, Applied Surface Science. 2016;376:10– 15.

Ohko Y, Tatsuma T, Fujii T, Naoi K. Niwa C, Kubota Y, Fujishima A., Multicolour photochromism of TiO2 films loaded with silver nanoparticles. Nat Mater. 2003;2(1): 29-31.

Masayoshi Kaneko, Long-term stabilization of mixed silver nanoparticles on an Al surface with poly(2-vinylpyridine) films, Vib. Spectrosc. 2016;86;61-66.

Ming-De Li, Yan Cui, Min-Xia Gao, Jia Luo, Bin Ren, Zhong-Qun Tian. Clean Substrates Prepared by Chemical Adsorption of Iodide Followed by Electrochemical Oxidation for Surface-Enhanced Raman Spectroscopic Study of Cell Membrane, Anal. Chem. 2008;80: 5118–5125.

Permasiri WR, Moir DT, Kreieger N, Jones G, Ziegler LD. Characterization of the Surface Enhanced Raman Scattering (SERS) of Bacteria, J. Phys. Chem. B. 2005;109:312-320.

Kneipp J, Kneipp H, McLaughlin M, Brown D, Kneipp K. In vivo Molecular Probing of Cellular Compartments with Gold Nanoparticles and Nanoaggregates, Nano Lett. 2006;6:2225–2231.

Kumer GVP, Reddy BAA, Arif M, Kundu TK, Narayana C. Surface-Enhanced Raman Scattering Studies of Human Transcriptional Coactivator p300, J. Phys. Chem. B. 2006;110:16787–16792.

Tamitake I, Vasudevanpillai B, Mitsuru I, Yasuo K, Kazuhiro H, Akifumi I, Yukihiro O, Surface-enhanced resonance Raman scattering and background light emission coupled with plasmon of single Ag nanoaggregates, Journal of Chemical Physics. 2006;124:1347081-1347086.

Gorou M, Kenji S, Sukekatsu U. Raman scattering of organic molecules adsorbed on metal surfaces, BUSSEI KENKYU. 1988;50(1):A76–A80.

Anil Desireddy, Brian E. Conn, Jingshu Guo, Bokwon Yoon, Robert N. Barnett, Bradley M. Monahan, Kristin Kirschbaum, Wendell P. Griffith, Robert L. Whetten, Uzi Landman, Terry P. Bigion,,Ultrastable silver nanoparticles, Nature. 2013;501: 399–402.

Hidehiro Kamiya, Motoyuki, Iijima. Dispersion, Behavior Control of Nanoparticles and its Applications, FUNSAI. 2012;55:12-18.

Kunio Furusawa. Measurement of zeta potential, BUNSEKI. 2004;5;247-254.

Masayoshi Kaneko, Anatase. TiO2 adsorption on 3-aminopropyltrimethoxysilane-modified Al or glass surfaces, Heliyon. 2019;5;e01734.